Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Clin Microbiol ; : e0002824, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639489

ABSTRACT

The mpox outbreak, caused by monkeypox virus (MPXV), accelerated the development of molecular diagnostics. In this study, we detail the evaluation of the Research Use Only (RUO) NeuMoDx MPXV assay by multiple European and US sites. The assay was designed and developed by Qiagen for the NeuMoDx Molecular Systems. Primers and probes were tested for specificity and inclusivity in silico. The analytical sensitivity of the assay was determined by testing dilutions of synthetic and genomic MPXV DNA. A total of 296 clinical samples were tested by three sites; the Johns Hopkins University (US), UZ Gent (Belgium, Europe), and Hospital Universitario San Cecilio (Spain, Europe). The analytical sensitivity of the assay was 50 copies/mL for both clades I and II. The assay showed 100% in silico identity for 80 clade I and 99.98% in silico identity for 5,162 clade II genomes. Clade II primers and probes showed 100% in silico specificity; however, identity of at least one of the two sets of clade I primers and probes with variola, cowpox, camelpox, and vaccinia viruses was noticed. The clinical validation showed sensitivity of 99.21% [95% confidence interval (CI): 95.66-99.98%] and specificity of 96.64% (95% CI: 91.62-99.08%) for lesion swab samples. The NeuMoDx MPXV Test shows acceptable analytical and clinical performance. The assay improves the laboratory's workflow as it consolidates nucleic acid extraction, PCR, data analysis, and interpretation and can be interfaced. The Test Strip can differentiate clades I and II, which has important laboratory safety implications. IMPORTANCE: In this manuscript, we provide detailed in silico analysis and clinical evaluation of the assay using a large cohort of clinical samples across three academic centers in Europe and the United States. Because the assay differentiates MPXV clades I and II, this manuscript is timely due to the current need to rule out the regulated clade I by diagnostic clinical laboratories. In December 2023, and due to first report of cases of sexually transmitted clade I infections in the Democratic Republic of the Congo, when generic assays that do not differentiate the clades are used, samples are considered regulated. The assay meets the need of full automation and has a marked positive impact on the laboratory workflow.

2.
Reprod Sci ; 28(9): 2699-2709, 2021 09.
Article in English | MEDLINE | ID: mdl-33914296

ABSTRACT

Uterine fibroids feature excessive deposition of types I and III collagen. Previous ex vivo studies showed an FDA-approved collagenase (EN3835)-digested types I and III collagen fibers in fibroid tissues; however, collagenase had not been evaluated in vivo for effects on uterine fibroids. The objective was to assess the safety and tolerability of collagenase injection directly into uterine fibroids. This was a prospective, open label, dose escalation study. The study participants were fifteen women aged 35-50 years with symptomatic uterine fibroids planning to undergo hysterectomy. Three subjects received saline and methylene blue, three subjects received a fixed dose of EN3835, and 9 subjects received stepped, increasing dosages of EN3835, all by transvaginal, ultrasound-guided injections. Primary outcome measures were safety and tolerability of the injection and change in collagen content between treated and control tissues. There were no significant adverse events following injection of EN3835 into uterine fibroids. Masson's trichrome stains revealed a 39% reduction in collagen content in treated samples compared to controls (p <0.05). Second harmonic generation (SHG) analysis showed treated samples to have a 21% reduction in density of collagen compared to controls. Picrosirius-stained collagenase-treated fibroids showed collagen fibers to be shorter and less dense compared to controls. Subjects reported a decrease in fibroid-related pain on the McGill Pain Questionnaire after study drug injection in Group 2 at both 4-8 days and 60-90 days post-injection. The findings indicated that injection of collagenase was safe and well tolerated. These results support further clinical investigation of collagenase as a minimally invasive treatment of uterine fibroids. NCT0289848.


Subject(s)
Collagen Type III/metabolism , Collagen Type I/metabolism , Leiomyoma/drug therapy , Microbial Collagenase/administration & dosage , Uterine Neoplasms/drug therapy , Adult , Baltimore , Female , Humans , Injections, Intralesional , Leiomyoma/metabolism , Leiomyoma/pathology , Microbial Collagenase/adverse effects , Middle Aged , Pilot Projects , Prospective Studies , Time Factors , Treatment Outcome , Uterine Neoplasms/metabolism , Uterine Neoplasms/pathology
3.
J Clin Endocrinol Metab ; 104(3): 970-980, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30239831

ABSTRACT

Context: Uterine leiomyomata (fibroids) are prevalent sex hormone‒dependent tumors with an altered response to mechanical stress. Ulipristal acetate, a selective progesterone receptor (PR) modulator, significantly reduces fibroid size in patients. However, PR signaling in fibroids and its relationship to mechanical signaling are incompletely understood. Objective: Our prior studies revealed that A-kinase anchoring protein 13 (AKAP13) was overexpressed in fibroids and contributed to altered mechanotransduction in fibroids. Because AKAP13 augmented nuclear receptor signaling in other tissues, we sought to determine whether AKAP13 might influence PR signaling in fibroids. Methods and Results: Fibroid samples from patients treated with ulipristal acetate or placebo were examined for AKAP13 expression by using immunohistochemistry. In immortalized uterine fibroid cell lines and COS-7 cells, we observed that AKAP13 increased ligand-dependent PR activation of luciferase reporters and endogenous progesterone-responsive genes for PR-B but not PR-A. Inhibition of ERK reduced activation of PR-dependent signaling by AKAP13, but inhibition of p38 MAPK had no effect. In addition, glutathione S-transferase‒binding assays revealed that AKAP13 was bound to PR-B through its carboxyl terminus. Conclusion: These data suggest an intersection of mechanical signaling and PR signaling involving AKAP13 through ERK. Further elucidation of the integration of mechanical and hormonal signaling pathways in fibroids may provide insight into fibroid development and suggest new therapeutic strategies for treatment.


Subject(s)
A Kinase Anchor Proteins/metabolism , Leiomyoma/pathology , Minor Histocompatibility Antigens/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, Progesterone/metabolism , Uterine Neoplasms/pathology , A Kinase Anchor Proteins/genetics , Adult , Animals , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Female , Gene Knockdown Techniques , Humans , Leiomyoma/drug therapy , MAP Kinase Signaling System/drug effects , Mechanotransduction, Cellular/drug effects , Middle Aged , Minor Histocompatibility Antigens/genetics , Norpregnadienes/pharmacology , Norpregnadienes/therapeutic use , Progesterone/metabolism , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/metabolism , Receptors, Progesterone/antagonists & inhibitors , Uterine Neoplasms/drug therapy , Uterus/drug effects , Uterus/pathology
4.
Brain Res Bull ; 140: 72-79, 2018 06.
Article in English | MEDLINE | ID: mdl-29653158

ABSTRACT

OBJECTIVE: Hormonal contributions to the sex-dependent development of both obsessive-compulsive disorder (OCD) and obesity have been described, but the underlying mechanisms are incompletely understood. A-kinase anchoring protein 13 (AKAP13) significantly augments ligand-dependent activation of estrogen receptors alpha and beta. The hypothalamus and pituitary gland are implicated in the development and exacerbation of OCD and obesity and have strong AKAP13 expression. The AKAP13 localization pattern observed in these key brain regions together with its effects on sex steroid action suggest a potential role for AKAP13 in compulsive-like behaviors. Here we tested the role of AKAP13 in compulsive-like behavior and body weight using an Akap13 haploinsufficient murine model. MATERIALS AND METHODS: Targeted deletion of the Akap13 gene generated haploinsufficient (Akap13+/-) mice in a C57BL6/J genetic background. Established behavioral assays were conducted, video recorded, and scored blindly to assess compulsive-like behavior based on genotype and gender. Tests included: marble-burying, grooming, open- field and elevated plus-maze. Brain and body weights were also obtained. Mean levels of test outcomes were compared using multi-way ANOVA to test for genotype, sex, genotype*sex, and genotype*sex*age interaction effects with Bonferroni adjustment for multiple comparisons, to further explain any significant interactions. RESULTS: The marble-burying and grooming assays revealed significant sex-dependent increases in perseverative, compulsive-like behaviors in female Akap13 haploinsufficient mice compared to female wild type (WT) mice by demonstrating increased marble-burying activity (p = .0025) and a trend towards increased grooming behavior (p = .06). Male Akap13 haploinsufficient mice exhibited no behavioral changes (p > 0.05). Elevated plus-maze and open-field test results showed no overt anxiety-like behavior in Akap13 haploinsufficient mice irrespective of sex (p > 0.05, both). No differences in brain weight were found in Akap13 haploinsufficient mice compared to WT mice (p > 0.05). However, female Akap13 haploinsufficient mice weighed more than female WT mice in the 4 to <7 months age range (p = .0051). Male Akap13 haploinsufficient mice showed no differences in weight compared to male WT mice (p = >0.05) at any age range examined. CONCLUSION: Akap13 haploinsufficiency led to sex-dependent, compulsive-like behavioral changes in a murine model. Interestingly, Akap13 haploinsufficiency also led to a sex-dependent increase in body weight. These results revealed a requirement for AKAP13 in murine behavior, particularly in female mice, and is the first report of AKAP13 involvement in murine behavior. Future studies may examine the involvement of AKAP13 in the pathophysiology of OCD in female humans and may contribute to a better understanding of the role of AKAP13 and sex hormones in the development and exacerbation of OCD.


Subject(s)
A Kinase Anchor Proteins/deficiency , Body Weight/physiology , Guanine Nucleotide Exchange Factors/deficiency , Obsessive-Compulsive Disorder/metabolism , A Kinase Anchor Proteins/genetics , Animals , Anxiety/metabolism , Behavior, Animal/physiology , Compulsive Behavior/metabolism , Disease Models, Animal , Female , Guanine Nucleotide Exchange Factors/genetics , Male , Mice, Inbred C57BL , Mice, Transgenic , Minor Histocompatibility Antigens/genetics , Obesity/metabolism , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...